Travel, Transportation and Energy Efficiency Insights for Urban Person Travel

Context, Factors, Options & Opportunities

Joseph L. Schofer December 3, 2007

Joseph L. Schofer

U.S. Primary Energy Consumption by Source and Sector, 2006

Contributors to Transportation Energy Consumption – HH Travel

Increasing Transportation Energy Efficiency

- Supply actions
 - Network management
 - Signals: ITE Grade: D-
 - Ramp metering
 - Real time flow control
 - Incident management
 - New highway capacity
 - Induced demand?
 - New transit
 - Cost effectiveness?
 - Technological advances
 - Fuels & power plants
 - Roadway automation
 - Behavioral stasis

Evaluation of Twin Cities Ramp Metering

- Demand actions, incentives voluntary
 - Congestion pricing
 - Traveler information
 - Mode shifting
 - Ride sharing incentives (HOV lanes)
 - Transit service quality, information
 - Non-motorized support
 - Travel blending –social marketing
 - Telecommuting
 - Time shifting peak spreading
 - Land use: densification, nucleation

Example: Congestion Wastes Fuel

Utility Maximization & Equilibrium

Planned interchange, I-495 (suburban Virginia) \$350 m

- Induced demand:
 - Less congestion lower price more travel (VMT)
- Unintended consequences?
 - Rational, utility maximizing consumers
 - New equilibrium (individual)
- Managing outcomes
 - Targeted investment
 - Key bottlenecks
 - Pricing and regulation
- Policy should be driven by
 - Process knowledge
 - Prediction: if-then models

SOVs, HOVs & Collective Riding What's really happening

What Leads Travelers to Choose Transit?

- Consumers demand quality
 - Coverage
 - Travel time
 - Reliability
 - Integration one-ride, one fare
 - Schedule flexibility,
 Independence
- Price is a factor
- Utilization drives sustainable transit
 - For resource efficiency
 - To justify costs (subsidies)
 - MARKET DENSITY

Example: Land Use Makes a Difference Person Travel and Density

Population Density, persons per square mile

Land Use Policies and Actions Accessibility, not Just Mobility

- Understanding relationships, tradeoffs
- Providing information
- Rational regional regulations
- Strategic infrastructure investment
- Pricing services
- Effective options, designs
 - Nucleation location
 - Density
 - Mixed land uses
 - Non-motorized travel
 - Integrated transportation

Implementing Energy Efficient Travel How difficult? How long?

Hydrogen **Electric** vehicles Technical, Cost, Phase-over vehicles Implementation Challenge: Rail transit Bus rapid transit Congestion pricing Plug-in hybrid vehicles Coordinated telecommuting traffic signals Biofuels Ramp metering Travel blending Incident (social marketing management **Business**

Automated highways

Efficient land use

as usual

Barriers to Energy Conservation

- Travelers: utility maximizers
 - Individual vs. social optima
 - Limited information
- Voluntary vs. forced change
 - Switch to better option
 - Pushed to inferior option
- Multi-criteria decision making – trade-offs
 - E.g., housing vs commuting
- Phase-over costs
- Inertia and vested interests
- Uncertainty and forecasting
 - Better models can help

Technology can avoid behavior changes – but is it (1) fast enough? (2) sufficient? (3)

sustainable?

Affecting the Policy Process

- Resistance to big change
 - Leadership vacuum
 - High discount rates
 - Something for nothing
- Make policy salient to individuals, leaders
 - Environment
 - Energy
 - Congestion
- Market (voluntary) solutions
 - Attractive options
 - Pricing signal real costs
- Information, education, prediction